Роль
Аплайнсы
The pre-configured and ready-to-use runtime environment for the Fast.ai's courses Practical Deep Learning for Coders, 2017 edition, part 2. It includes Python 2.7, Theano 0.8, TensorFlow 1.0 and Keras 1.1. The stack also includes CUDA and cuDNN, and is optimized for running on NVidia GPU.
The pre-configured and ready-to-use runtime environment for the Fast.ai's courses Practical Deep Learning for Coders, 2017 edition, part 1. It includes Python 2.7, Theano 0.8 and Keras 1.1. The stack also includes CUDA and cuDNN, and is optimized for running on NVidia GPU.
The pre-configured and ready-to-use runtime environment for the Open Machine Learning Course, 2018. It includes Python 3.6, TensorFlow 1.4, Keras 2, XGBoost, LightGBM and Vowpal Wabbit. The stack also includes CUDA and cuDNN, and is optimized for running on NVidia GPU.
The pre-configured and ready-to-use runtime environment for the Open Machine Learning Course, 2018. It includes Python 3.6, TensorFlow 1.4, Keras 2, XGBoost, LightGBM and Vowpal Wabbit. The software stack is optimized for running on CPU.
A pre-configured and fully integrated software stack with Theano, a numerical computation library for Python, and Python 3.6. It provides a stable and tested execution environment for training, inference, or running as an API service. The stack can be easily integrated into continuous integration and deployment workflows. It is designed for short and long-running high-performance tasks and optimized for running on NVidia GPU.
A pre-configured and fully integrated software stack with Theano, a numerical computation library for Python, and Python 2.7. It provides a stable and tested execution environment for training, inference, or running as an API service. The stack can be easily integrated into continuous integration and deployment workflows. It is designed for short and long-running high-performance tasks and optimized for running on NVidia GPU.
A pre-configured and fully integrated software stack with Caffe deep learning framework and Python 3.6. It provides a stable and tested execution environment for training, inference, or running as an API service. The stack can be easily integrated into continuous integration and deployment workflows. It is designed for short and long-running high-performance tasks and optimized for running on NVidia GPU.
A pre-configured and fully integrated software stack with Caffe deep learning framework and Python 2.7. It provides a stable and tested execution environment for training, inference, or running as an API service. The stack can be easily integrated into continuous integration and deployment workflows. It is designed for short and long-running high-performance tasks and optimized for running on NVIdia GPU.