Version
Аплайнсы
The pre-configured and ready-to-use runtime environment for the Stanford's CS224n course: Natural Language Processing with Deep Learning. It includes Python 3.6 and TensorFlow 1.4.1. The software stack is optimized for running on CPU.
The pre-configured and ready-to-use runtime environment for the Stanford's CS224n course: Natural Language Processing with Deep Learning. It includes Python 2.7 and TensorFlow 1.4.1. The software stack is optimized for running on CPU.
The pre-configured and ready-to-use runtime environment for the Stanford's CS20 course: Tensorflow for Deep Learning Research. It includes Python 3.6 and TensorFlow 1.4.1. The software stack is optimized for running on CPU.
The pre-configured and ready-to-use runtime environment for the MIT 6.S094 course: Deep Learning for Self-Driving Cars, 2017. It includes Python 2.7, TensorFlow 0.12.1 and OpenCV 3.3.0. The software stack is optimized for running on CPU.
The pre-configured and ready-to-use runtime environment for the Fast.ai's courses Practical Deep Learning for Coders, 2018 edition, part 1. It includes Python 3.6 and PyTorch 0.3.0. The software stack is optimized for running on CPU.
The pre-configured and ready-to-use runtime environment for the Fast.ai's courses Practical Deep Learning for Coders, 2017 edition, part 2. It includes Python 2.7, Theano 0.8, TensorFlow 1.0 and Keras 1.1. The software stack is optimized for running on CPU.
The pre-configured and ready-to-use runtime environment for the Fast.ai's courses Practical Deep Learning for Coders, 2017 edition, part 1. It includes Python 2.7, Theano 0.8 and Keras 1.1. The software stack is optimized for running on CPU.
The pre-configured and ready-to-use runtime environment for the CS231n course - Convolutional Neural Networks for Visual Recognition, Stanford University, Spring 2017. It includes latest versions of Python 3, TensorFlow, and PyTorch. The software stack is optimized for running on CPU.
The pre-configured and ready-to-use runtime environment for the CS231n course - Convolutional Neural Networks for Visual Recognition, Stanford University, Spring 2017. It includes latest versions of Python 2, TensorFlow, and PyTorch. The software stack is optimized for running on CPU.
The pre-configured and ready-to-use runtime environment for the CS231n course - Convolutional Neural Networks for Visual Recognition, Stanford University, Spring 2017. It includes original (old) versions of Python, TensorFlow, and PyTorch, used in the course. The software stack is optimized for running on CPU.