Version
Аплайнсы
![Course_fast_ai_2017_1_cpu Course fast ai](/ic/appliances/max/course_fast_ai.png)
The pre-configured and ready-to-use runtime environment for the Fast.ai's courses Practical Deep Learning for Coders, 2017 edition, part 1. It includes Python 2.7, Theano 0.8 and Keras 1.1. The software stack is optimized for running on CPU.
![Fast_ai-course-2017 Course](/ic/packages/min/course.png)
![Course_stanford_cs231n_1617spring_python3_cuda9_latest Course stanford](/ic/appliances/max/course_stanford.png)
The pre-configured and ready-to-use runtime environment for the CS231n course - Convolutional Neural Networks for Visual Recognition, Stanford University, Spring 2017. It includes latest versions of Python 3, TensorFlow, and PyTorch. The stack also includes CUDA and cuDNN, and is optimized for running on NVidia GPU.
![Stanford-cs231n-course-1617spring Course](/ic/packages/min/course.png)
![Tensorflow-1 Tensorflow](/ic/packages/min/tensorflow.png)
![Pytorch-0 Pytorch](/ic/packages/min/pytorch.png)
![Keras-2 Keras](/ic/packages/min/keras.png)
![Python-3 Python](/ic/packages/min/python.png)
![Cuda-9 Cuda](/ic/packages/min/cuda.png)
![Cudnn-7 Cudnn](/ic/packages/min/cudnn.png)
![Cuda_only-nvidia_drivers-384 Nvidia drivers](/ic/packages/min/nvidia_drivers.png)
![Course_stanford_cs231n_1617spring_python3_cpu_latest Course stanford](/ic/appliances/max/course_stanford.png)
The pre-configured and ready-to-use runtime environment for the CS231n course - Convolutional Neural Networks for Visual Recognition, Stanford University, Spring 2017. It includes latest versions of Python 3, TensorFlow, and PyTorch. The software stack is optimized for running on CPU.
![Stanford-cs231n-course-1617spring Course](/ic/packages/min/course.png)
![Tensorflow-1 Tensorflow](/ic/packages/min/tensorflow.png)
![Pytorch-0 Pytorch](/ic/packages/min/pytorch.png)
![Keras-2 Keras](/ic/packages/min/keras.png)
![Python-3 Python](/ic/packages/min/python.png)
![Course_stanford_cs231n_1617spring_python2_cuda9_latest Course stanford](/ic/appliances/max/course_stanford.png)
The pre-configured and ready-to-use runtime environment for the CS231n course - Convolutional Neural Networks for Visual Recognition, Stanford University, Spring 2017. It includes latest versions of Python 2, TensorFlow, and PyTorch. The stack also includes CUDA and cuDNN, and is optimized for running on NVidia GPU.
![Stanford-cs231n-course-1617spring Course](/ic/packages/min/course.png)
![Tensorflow-1 Tensorflow](/ic/packages/min/tensorflow.png)
![Pytorch-0 Pytorch](/ic/packages/min/pytorch.png)
![Keras-2 Keras](/ic/packages/min/keras.png)
![Python-2 Python](/ic/packages/min/python.png)
![Cuda-9 Cuda](/ic/packages/min/cuda.png)
![Cudnn-7 Cudnn](/ic/packages/min/cudnn.png)
![Cuda_only-nvidia_drivers-384 Nvidia drivers](/ic/packages/min/nvidia_drivers.png)
![Course_stanford_cs231n_1617spring_python2_cpu_latest Course stanford](/ic/appliances/max/course_stanford.png)
The pre-configured and ready-to-use runtime environment for the CS231n course - Convolutional Neural Networks for Visual Recognition, Stanford University, Spring 2017. It includes latest versions of Python 2, TensorFlow, and PyTorch. The software stack is optimized for running on CPU.
![Stanford-cs231n-course-1617spring Course](/ic/packages/min/course.png)
![Tensorflow-1 Tensorflow](/ic/packages/min/tensorflow.png)
![Pytorch-0 Pytorch](/ic/packages/min/pytorch.png)
![Keras-2 Keras](/ic/packages/min/keras.png)
![Python-2 Python](/ic/packages/min/python.png)
![Course_stanford_cs231n_1617spring_cuda8_original Course stanford](/ic/appliances/max/course_stanford.png)
The pre-configured and ready-to-use runtime environment for the CS231n course - Convolutional Neural Networks for Visual Recognition, Stanford University, Spring 2017. It includes original (old) versions of Python, TensorFlow, and PyTorch, used in the course. The stack also includes CUDA and cuDNN, and is optimized for running on NVidia GPU.
![Stanford-cs231n-course-1617spring Course](/ic/packages/min/course.png)
![Tensorflow-1 Tensorflow](/ic/packages/min/tensorflow.png)
![Pytorch-0 Pytorch](/ic/packages/min/pytorch.png)
![Keras-2 Keras](/ic/packages/min/keras.png)
![Python-3 Python](/ic/packages/min/python.png)
![Cuda-8 Cuda](/ic/packages/min/cuda.png)
![Cudnn-5 Cudnn](/ic/packages/min/cudnn.png)
![Cuda_only-nvidia_drivers-384 Nvidia drivers](/ic/packages/min/nvidia_drivers.png)
![Course_stanford_cs231n_1617spring_cpu_original Course stanford](/ic/appliances/max/course_stanford.png)
The pre-configured and ready-to-use runtime environment for the CS231n course - Convolutional Neural Networks for Visual Recognition, Stanford University, Spring 2017. It includes original (old) versions of Python, TensorFlow, and PyTorch, used in the course. The software stack is optimized for running on CPU.
![Stanford-cs231n-course-1617spring Course](/ic/packages/min/course.png)
![Tensorflow-1 Tensorflow](/ic/packages/min/tensorflow.png)
![Pytorch-0 Pytorch](/ic/packages/min/pytorch.png)
![Keras-2 Keras](/ic/packages/min/keras.png)
![Python-3 Python](/ic/packages/min/python.png)
![Course_mlcourse_open_2018_cuda8 Machine learning education](/ic/appliances/max/machine_learning_education.png)
The pre-configured and ready-to-use runtime environment for the Open Machine Learning Course, 2018. It includes Python 3.6, TensorFlow 1.4, Keras 2, XGBoost, LightGBM and Vowpal Wabbit. The stack also includes CUDA and cuDNN, and is optimized for running on NVidia GPU.
![Mlcourse_open-course-2018 Course](/ic/packages/min/course.png)
![Cuda-8 Cuda](/ic/packages/min/cuda.png)
![Cudnn-7 Cudnn](/ic/packages/min/cudnn.png)
![Cuda_only-nvidia_drivers-384 Nvidia drivers](/ic/packages/min/nvidia_drivers.png)
![Course_mlcourse_open_2018_cpu Machine learning education](/ic/appliances/max/machine_learning_education.png)
The pre-configured and ready-to-use runtime environment for the Open Machine Learning Course, 2018. It includes Python 3.6, TensorFlow 1.4, Keras 2, XGBoost, LightGBM and Vowpal Wabbit. The software stack is optimized for running on CPU.
![Mlcourse_open-course-2018 Course](/ic/packages/min/course.png)